Вариант № 8838

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 991
i

Опре­де­ли­те наи­мень­шее на­ту­раль­ное число, крат­ное 2, ко­то­рое при де­ле­нии на 19 с остат­ком дает не­пол­ное част­ное, рав­ное 5.



2
Задание № 662
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром изоб­ра­же­ны фи­гу­ры, сим­мет­рич­ные от­но­си­тель­но пря­мой l.

1)

2)

3)

4)

5)



3
Задание № 753
i

Пря­мые a и b, пе­ре­се­ка­ясь, об­ра­зу­ют че­ты­ре угла. Из­вест­но, что сумма трех углов равна 200°. Най­ди­те гра­дус­ную меру мень­ше­го угла.



4
Задание № 394
i

Если 18% не­ко­то­ро­го числа равны 27, то 30% этого числа равны:



5
Задание № 665
i

Вы­чис­ли­те  дробь: чис­ли­тель: 6,4 в квад­ра­те минус 3,3 в квад­ра­те плюс 9,7 умно­жить на 4,9, зна­ме­на­тель: 8 конец дроби .



6
Задание № 996
i

Ве­ли­чи­ны a и b яв­ля­ют­ся прямо про­пор­ци­о­наль­ны­ми. Ис­поль­зуя дан­ные таб­ли­цы, най­ди­те не­из­вест­ное зна­че­ние ве­ли­чи­ны a.

 

a1,7
b1025,1


7
Задание № 487
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant9.



8
Задание № 8
i

За­пи­ши­те фор­му­лу n-го члена ариф­ме­ти­че­ской про­грес­сии (an), если даны ее пер­вые пять чле­нов: −10, −4, 2, 8, 14.



9
Задание № 639
i

Одна из сто­рон пря­мо­уголь­ни­ка на 6 см длин­нее дру­гой, а его пло­щадь равна 112 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:



10
Задание № 550
i

Точки A(-1; 3) и B(2 ;5)  — вер­ши­ны квад­ра­та ABCD. Пе­ри­метр квад­ра­та равен:



11
Задание № 911
i

На кру­го­вой диа­грам­ме по­ка­за­но рас­пре­де­ле­ние по­сев­ных пло­ща­дей под зер­но­вые куль­ту­ры в аг­ро­хо­зяй­стве. Сколь­ко гек­та­ров от­ве­де­но под рожь, если яч­ме­нем за­се­я­но на 40 га боль­ше, чем пше­ни­цей?



12
Задание № 882
i

Ука­жи­те номер ри­сун­ка, на ко­то­ром пред­став­лен эскиз гра­фи­ка функ­ции y  =  4 − (x + 1)2.

1)

2)

3)

4)

5)



13
Задание № 463
i

Пря­мая a, па­рал­лель­ная плос­ко­сти α, на­хо­дит­ся от нее на рас­сто­я­нии 3. Через пря­мую a про­ве­де­на плос­кость β, пе­ре­се­ка­ю­щая плос­кость α по пря­мой b и об­ра­зу­ю­щая с ней угол 60°. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка ABCD, если A и B  — такие точки пря­мой a, что AB = 2, а C и D  — такие точки пря­мой b, что CD = 5.



14
Задание № 464
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 27 в сте­пе­ни x плюс 9 в сте­пе­ни x минус 20 умно­жить на 3 в сте­пе­ни x , зна­ме­на­тель: 3 в сте­пе­ни x левая круг­лая скоб­ка 3 в сте­пе­ни x минус 4 пра­вая круг­лая скоб­ка конец дроби .



15
Задание № 255
i

Точки A, B, C лежат на боль­шой окруж­но­сти сферы так, что тре­уголь­ник ABC  — рав­но­сто­рон­ний. Если AB  =  3 ко­рень из 6 , то пло­щадь сферы равна:



16
Задание № 256
i

Упро­сти­те вы­ра­же­ние 5 ко­си­нус левая круг­лая скоб­ка 7 Пи плюс альфа пра­вая круг­лая скоб­ка плюс синус левая круг­лая скоб­ка дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 2 конец дроби минус альфа пра­вая круг­лая скоб­ка .



17
Задание № 197
i

Через вер­ши­ну A пря­мо­уголь­но­го тре­уголь­ни­ка ABC (∠C  =  90°) про­ве­ден пер­пен­ди­ку­ляр AK к его плос­ко­сти. Най­ди­те рас­сто­я­ние от точки K до пря­мой BC, если AK  =  2, AB  =  4, BC  =   ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та .



18
Задание № 678
i

Сумма кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 2x минус 3 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =3 минус x равна (равен):



19
Задание № 79
i

Если в пра­виль­ной че­ты­рех­уголь­ной пи­ра­ми­де вы­со­та равна 4, а пло­щадь диа­го­наль­но­го се­че­ния равна 12, то ее объем равен ...


Ответ:

20
Задание № 680
i

Най­ди­те про­из­ве­де­ние боль­ше­го корня на ко­ли­че­ство кор­ней урав­не­ния  дробь: чис­ли­тель: 14, зна­ме­на­тель: x в квад­ра­те минус 8x плюс 22 конец дроби минус x в квад­ра­те плюс 8x=17.


Ответ:

21
Задание № 351
i

Сумма кор­ней (или ко­рень, если он один) урав­не­ния 6 умно­жить на 6 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 x пра­вая круг­лая скоб­ка =144 плюс 2 умно­жить на x в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 3 6 пра­вая круг­лая скоб­ка равна ...


Ответ:

22
Задание № 922
i

Пусть (x; y)  — ре­ше­ние си­сте­мы урав­не­ний  си­сте­ма вы­ра­же­ний 3x минус y=7,3x в квад­ра­те минус xy плюс x=32. конец си­сте­мы .

Най­ди­те зна­че­ние 3yx.


Ответ:

23
Задание № 593
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 44 пра­вая круг­лая скоб­ка умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка боль­ше 35 в сте­пе­ни левая круг­лая скоб­ка 2x минус 27 пра­вая круг­лая скоб­ка .


Ответ:

24
Задание № 654
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния 5 синус 2x плюс 3 ко­си­нус 4x плюс 3=0 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби ;2 Пи пра­вая квад­рат­ная скоб­ка .


Ответ:

25
Задание № 55
i

Четырёхуголь­ник ABCD впи­сан в окруж­ность. Если \angle BAC=40 гра­ду­сов, \angle ABD = 75 гра­ду­сов, то гра­дус­ная мера между пря­мы­ми AB и CD равна ...


Ответ:

26
Задание № 566
i

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 8 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x| плюс |x минус 10| плюс |x минус 5| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 8 минус x пра­вая круг­лая скоб­ка .


Ответ:

27
Задание № 567
i

Из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми 100 км, од­но­вре­мен­но вы­ез­жа­ют два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля на 40 км/ч боль­ше ско­ро­сти вто­ро­го, но он де­ла­ет в пути оста­нов­ку на 40 мин. Най­ди­те наи­боль­шее зна­че­ние ско­ро­сти (в км/ч) пер­во­го ав­то­мо­би­ля, при дви­же­нии с ко­то­рой он при­бу­дет в В не позже вто­ро­го.


Ответ:

28
Задание № 388
i

В рав­но­бо­кой тра­пе­ции боль­шее ос­но­ва­ние вдвое боль­ше каж­дой из осталь­ных сто­рон и лежит в плос­ко­сти α. Бо­ко­вая сто­ро­на об­ра­зу­ет с плос­ко­стью α угол, синус ко­то­ро­го равен  дробь: чис­ли­тель: ко­рень из 3 , зна­ме­на­тель: 6 конец дроби . Най­ди­те 18sinβ, где β — угол между диа­го­на­лью тра­пе­ции и плос­ко­стью α.


Ответ:

29
Задание № 299
i

Ко­ли­че­ство целых ре­ше­ний не­ра­вен­ства 7 в сте­пе­ни левая круг­лая скоб­ка x плюс 3 пра­вая круг­лая скоб­ка плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 23 минус x пра­вая круг­лая скоб­ка боль­ше 5 равно ...


Ответ:

30
Задание № 390
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся ромб со сто­ро­ной  ко­рень из: на­ча­ло ар­гу­мен­та: 42 конец ар­гу­мен­та и углом BAD, рав­ным  арк­ко­си­нус дробь: чис­ли­тель: 3, зна­ме­на­тель: 4 конец дроби . Ребро SD пер­пен­ди­ку­ляр­но ос­но­ва­нию, а ребро SB об­ра­зу­ет с ос­но­ва­ни­ем угол 60 гра­ду­сов. Най­ди­те ра­ди­ус R сферы, про­хо­дя­щей через точки A, B, C и се­ре­ди­ну ребра SB. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния R2.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.